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Problem
Statement

I wanted to look for specific behavior at an Internet-
facing server.

The volume is too high to inspect all packets. This seems
like a case where we should sample, for example by
taking 1 in 1000 packets.

I tend to use tcpdump for packet captures, because then
I don’t have to install any software. But tcpdump does
not have a way to sample.

I was about to write a stmptePythoenr-serpt dodgy Go
program using the pcap library, when I decided to try
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Are IPv4 does not use a cryptographically sound method for
Checksums calculating checksums. But, it seems to be roughly
Uniform? uniform in practice.

$ tshark -T fields -e ip.checksum -r pings.pcap
Ox84a7
Ox02cl
Ox828f
Oxdell
Ox8163

Oxdl15a
Ox7187
Ox3336
Ox7cc3
Oxd298
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IPv4 Random
Samples

If we have a (kind of) randomly-distributed input, we can
easily get a subset of the data with a simple comparison.

We can do that with tcpdump by using a pcap filter:

$ tcpdump ‘ip and ((ip[10:2] & OxOfff) == OxOfff)’

The 1p[10:2] takes a 2-byte value starting at offset 10,
and we compare that with the constant Ox0f£ff. About 1 in
4096 IPv4 packets will have a checksum that matches, so
that allows us to sample at a rate of 1 in 4096.

We can use any value from1in2to1in 65536. More

careful math can actually get any value. &
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IPv6
checksums?
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TCP or UDP
Checksums

IPv6 has no header checksums. £4
The higher-layer protocols are supposed to do that.

For TCP, checksums are required. For UDP, checksums
were optional in IPv4, but they are mandatory in IPvé6.

I'm going to demonstrate with UDP, but the size is the

same for TCP, just at offset 16 instead of 6. Presumably
the UDP approach works for QUIC too.
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UDP 0 7 8 15 16 23 24 31

Checksums
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IPv6 Random
Samples Using
UDP

The udp construct does not work for IPv6 packets in
tcpdump for some reason. But we can the 1p construct
and skip over the IPv6 header.

$ tcpdump ‘ip6 and ((ip6[46:2] & OxOfff) == Ox0fff)’

Similar to the IPv4 version, we use 1p6[46:2] to takes a
2-byte value starting at offset 46, and we compare that
with the constant OxOfff. We use 46, since our IPv6
header is 40 bytes, and our UDP checksum is at offset 6 in
the UDP header.

This gives us similar sampling in IPv6.
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I[t's as Simple
as That!

sudo tcpdump -1 eth® -w dns-query-sample.pcap -U
'(port 53) and ((ip and udp and ((udp[10] & 0x80)

== 0x00) and ((1p[10:2] & OxOfff) == OxOfff)) or
(1p6 and udp and ((1p6[50] & Ox80) == Ox00) and
((1pb[46:2] & OxOfff) == Ox0fff)))'
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Caveats Random sampling is not the same as “1 in X packets”, but
rather roughly 1 in X packets, probabilisticly. This is
mostly useful for very high rates of packet arrival.

Checksums are set by packet sender, and so are not
secure. This is a useful technique for research and ad-
hoc analysis or troubleshooting, but not for serious
ongoing metrics.
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Problem

Statement
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I wanted to look for specific behavior at an Internet-facing server.



The volume is too high to inspect all packets. This seems like a case where we should sample, for example by taking 1 in 1000 packets.



I tend to use tcpdump for packet captures, because then I don’t have to install any software. But tcpdump does not have a way to sample.



I was about to write a simple Python script dodgy Go program using the pcap library, when I decided to try harder… 🤔







IPv4 Checksums
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 0  1  2  3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |Version|  IHL  |Type of Service|  Total Length  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Identification  |Flags|  Fragment Offset  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Time to Live |  Protocol  |  Header Checksum  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Source Address  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Destination Address  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Options  |  Padding  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+









Are Checksums Uniform?
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IPv4 does not use a cryptographically sound method for calculating checksums. But, it seems to be roughly uniform in practice.





$ tshark -T fields -e ip.checksum -r pings.pcap 

0x84a7

0x02c1

0x828f

0xde11

0x8163

0xd15a

0x7f87

0x3336

0x7cc3

0xd298







IPv4 Random Samples
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If we have a (kind of) randomly-distributed input, we can easily get a subset of the data with a simple comparison.



We can do that with tcpdump by using a pcap filter:





$ tcpdump ‘ip and ((ip[10:2] & 0x0fff) == 0x0fff)’





The ip[10:2] takes a 2-byte value starting at offset 10, and we compare that with the constant 0x0fff. About 1 in 4096 IPv4 packets will have a checksum that matches, so that allows us to sample at a rate of 1 in 4096.



We can use any value from 1 in 2 to 1 in 65536. More careful math can actually get any value. 🎉





IPv6 checksums?
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 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |Version| Traffic Class |  Flow Label  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Payload Length  |  Next Header  |  Hop Limit  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  |

  +  +

  |  |

  +  Source Address  +

  |  |

  +  +

  |  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  |

  +  +

  |  |

  +  Destination Address  +

  |  |

  +  +

  |  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







IPv6 checksums?



Slide  of  



 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |Version| Traffic Class |  Flow Label  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Payload Length  |  Next Header  |  Hop Limit  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  |

  +  +

  |  |

  +  Source Address  +

  |  |

  +  +

  |  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  |

  +  +

  |  |

  +  Destination Address  +

  |  |

  +  +

  |  |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





🚫





TCP or UDP Checksums 
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IPv6 has no header checksums. 🙈



The higher-layer protocols are supposed to do that.



For TCP, checksums are required. For UDP, checksums were optional in IPv4, but they are mandatory in IPv6.



I’m going to demonstrate with UDP, but the size is the same for TCP, just at offset 16 instead of 6. Presumably the UDP approach works for QUIC too.







UDP Checksums
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 0  7 8  15 16  23 24  31

  +--------+--------+--------+--------+

  |  Source  |  Destination  |

  |  Port  |  Port  |

  +--------+--------+--------+--------+

  |  |  |

  |  Length  |  Checksum  |

  +--------+--------+--------+--------+

  |

  |  data octets ...

  +---------------- ...











IPv6 Random Samples Using UDP 
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The udp construct does not work for IPv6 packets in tcpdump for some reason. But we can the ip construct and skip over the IPv6 header.





$ tcpdump ‘ip6 and ((ip6[46:2] & 0x0fff) == 0x0fff)’





Similar to the IPv4 version, we use ip6[46:2] to takes a 2-byte value starting at offset 46, and we compare that with the constant 0x0fff. We use 46, since our IPv6 header is 40 bytes, and our UDP checksum is at offset 6 in the UDP header.



This gives us similar sampling in IPv6.





It’s as Simple as That!
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sudo tcpdump -i eth0 -w dns-query-sample.pcap -U '(port 53) and ((ip and udp and ((udp[10] & 0x80) == 0x00) and ((ip[10:2] & 0x0fff) == 0x0fff)) or (ip6 and udp and ((ip6[50] & 0x80) == 0x00) and ((ip6[46:2] & 0x0fff) == 0x0fff)))'





Caveats
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Random sampling is not the same as “1 in X packets”, but rather roughly 1 in X packets, probabilisticly. This is mostly useful for very high rates of packet arrival. 



Checksums are set by packet sender, and so are not secure. This is a useful technique for research and ad-hoc analysis or troubleshooting, but not for serious ongoing metrics.
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