Random(ish) Sampling
with tcpdump

RIPE 90
2025-05-12
Lisbon, Portugal

Shane Kerr <shane.kerr@ibm.com> IBM NS1 Connect

Back-end Engineer

Problem
Statement

I wanted to look for specific behavior at an Internet-
facing server.

The volume is too high to inspect all packets. This seems
like a case where we should sample, for example by
taking 1 in 1000 packets.

I tend to use tcpdump for packet captures, because then
I don’t have to install any software. But tcpdump does
not have a way to sample.

I was about to write a stmptePythoenr-serpt dodgy Go
program using the pcap library, when I decided to try

‘%

harder... (5
Slide 2 of 13

IPv4 0 ! : :

01234567890123456789012345678901

(:FHECﬂ<SLHWWS +-d-d-t-+-t-t-F-t-F-F-F-Ft-+-t-t-t-F-t-F-F-F-F-F-F-F-F-t-F-F+-+-+-+
|Version| 1IHL |Type of Service] Total Length |
+-d-t-t-t-t-t-F-t-t-F-F-F-F-+-F-t-F-+-+-+2 -+-+-+-+-+-+-+
| Identification Fragment O |
+-d-t-t-+-t-t-F-t-F-F-F-+-+-+-+-f-t-F-F-F-F-F-+-+-F-+-+-F+-+-+-F
| Time to Live | Protocol Header Checksum |

+-d-t-t-t-t-t-t-F-t-F-F-F-t-+-+-+-
| Source Address
+-d-d-t-+-t-t-F-t-F-F-F-F-F-t-t-F-F-t-F-F-F-F-F-F-F-F-t-F-F+-+-+-+
| Destination Address |
+-d-t-t-+-t-t-F-t-t-F-F-F-F-t-t-t-F-t-F-F-F-F-F-t-t-F-t-F-F+-+-+-+
| Options Padding |
+-d-t-t-+-t-t-F-t-t-F-F-Ft-F-t-t-t-F-F-F-F-F-F-F-F-t-F-t-F-F+-+-+-+

ct-t-+t-+-t-+-+-+-+-+-+-+-+-+-+

Slide 3 of 13

Are IPv4 does not use a cryptographically sound method for
Checksums calculating checksums. But, it seems to be roughly
Uniform? uniform in practice.

$ tshark -T fields -e ip.checksum -r pings.pcap
Ox84a7
Ox02cl
Ox828f
Oxdell
Ox8163

Oxdl15a
Ox7187
Ox3336
Ox7cc3
Oxd298

Slide 4 0of 13

IPv4 Random
Samples

If we have a (kind of) randomly-distributed input, we can
easily get a subset of the data with a simple comparison.

We can do that with tcpdump by using a pcap filter:

$ tcpdump ‘ip and ((ip[10:2] & OxOfff) == OxOfff)’

The 1p[10:2] takes a 2-byte value starting at offset 10,
and we compare that with the constant Ox0f£ff. About 1 in
4096 IPv4 packets will have a checksum that matches, so
that allows us to sample at a rate of 1 in 4096.

We can use any value from1in2to1in 65536. More

careful math can actually get any value. &
Slide 50f 13

IPv6
checksums?

+

-ttt -t-t-t-t-t-F-t-t-t-F-F-t-t-t-F-F-F-t-t-F-F-F-t-+-+-+-+-+

|Version| Traffic Class | Flow Label |

+

+

|
+
|
+
|
+
|
+
|
+
|
+
|
+
|
+

-+ttt -t-t-t-F-t-F-F-F-F-t-t-t-F-F-F-F-F-+-+-+-+-+
Payload Length | Next Header | Hop Limit |
-+ttt -t-t-t-t-t-t-t-t-F-t-F-F-F-F-F-t-t-F-F-F-F-F-+-+-+-+-+

Source Address
—t-t-t-t-t-t-t-t-F-t-t-F-t-t-F-F-F-F-F-F-F-F-t-t-F-t-+-F+-+-+-+
Destination Address

|
+
|
+
|
+
|
-+
|
+
|
+
|
+
|
-+

t-t-t-t-t-t-t-t-t-F-t-t-t-t-F-F-t-t-F-F-F-t-t-+-+-F-+-+-+-+-+

Slide 6 of 13

IFMJé) +-d-t-t-t-t-F-t-t-+-+-+-4+ —4-t-t-t-t-t-F-t-F-F-t-Ft-+-+-+-+
|Version| Traffic Cls ow Label |
Checksums? +-+-+-+-+-+-+-+-+ -ttt -t-+t-F-F-+-+-+-+
| Paylo] der | Hop Limit |

+-+-+-+-+-+-+ -+-d-t-t-t-+-+-+-

+-t-+-F-+-+-+-+-+-+-+

Address

-t-t-t-t-t-+- 1 —t-t-t-F-t-t-+-+-+-+

Destination Address

|
+
|
+
|
+
|
-+
|
+
|
+
|
+
|
-+

e e R e s S e e e b

Slide 7 0of 13

TCP or UDP
Checksums

IPv6 has no header checksums. £4
The higher-layer protocols are supposed to do that.

For TCP, checksums are required. For UDP, checksums
were optional in IPv4, but they are mandatory in IPvé6.

I'm going to demonstrate with UDP, but the size is the

same for TCP, just at offset 16 instead of 6. Presumably
the UDP approach works for QUIC too.

Slide 8 of 13

UDP 0 7 8 15 16 23 24 31

Checksums

Slide 9 0f 13

IPv6 Random
Samples Using
UDP

The udp construct does not work for IPv6 packets in
tcpdump for some reason. But we can the 1p construct
and skip over the IPv6 header.

$ tcpdump ‘ip6 and ((ip6[46:2] & OxOfff) == Ox0fff)’

Similar to the IPv4 version, we use 1p6[46:2] to takes a
2-byte value starting at offset 46, and we compare that
with the constant OxOfff. We use 46, since our IPv6
header is 40 bytes, and our UDP checksum is at offset 6 in
the UDP header.

This gives us similar sampling in IPv6.

Slide 10 of 13

I[t's as Simple
as That!

sudo tcpdump -1 eth® -w dns-query-sample.pcap -U
'(port 53) and ((ip and udp and ((udp[10] & 0x80)

== 0x00) and ((1p[10:2] & OxOfff) == OxOfff)) or
(1p6 and udp and ((1p6[50] & Ox80) == Ox00) and
((1pb[46:2] & OxOfff) == Ox0fff)))'

Slide 11 of 13

Caveats Random sampling is not the same as “1 in X packets”, but
rather roughly 1 in X packets, probabilisticly. This is
mostly useful for very high rates of packet arrival.

Checksums are set by packet sender, and so are not
secure. This is a useful technique for research and ad-
hoc analysis or troubleshooting, but not for serious
ongoing metrics.

Slide 12 of 13

© 2025 International Business Machines Corporation

IBM and the IBM logo are trademarks of IBM Corporation,
registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on ibm.com/trademark.

THIS DOCUMENT IS DISTRIBUTED “AS IS” WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO EVENT, SHALL
IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF
THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF
DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF
OPPORTUNITY.

Client examples are presented as illustrations of how those clients
have used IBM products and the results they may have achieved.
Actual performance, cost, savings or other results in other operating
environments may vary.

Not all offerings are available in every country in which IBM
operates.

Any statements regarding IBM’s future direction, intent or product
plans are subject to change or withdrawal without notice.

Slide 13 of 13

	Slide 1
	DNS Authoritative Server Redundancy: Theory
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Copyright

L T ——

194300t 1Moy s M Corprtn,
ogstrd i man rsacons v Ot o108

e e g b4 et f o o o A
e o o e el o ek

THISCOCUMENT IS ISTRIBUTEO™A 15 WITHOUT Y
VARRANTY, LR EXPRESSOR IMPLIED. IO EVENTSHAL
16HBE LABLE ORAMYDANAGE ARSNG FROW THEUSE OF

A FGRMATION,IWCLODING 6T NOT LMD 10,0655 0F
OATA GUSIESS INTERUPTION,LOSS OF PROFT OB L0SS O

Clot amples s st bow o clnts
oo T procts andh sl Ty v s
Rl o cos, 300 o ot s it o

[——

T
s o i e i s

Swer30r13

Random(ish) Sampling

with tcpdump

Shane Kerr <shane.kerr@ibm.com>

Back-end Engineer

IBM NS1 Connect

RIPE 90

2025-05-12

Lisbon, Portugal

Footer

Problem

Statement

Slide of

I wanted to look for specific behavior at an Internet-facing server.

The volume is too high to inspect all packets. This seems like a case where we should sample, for example by taking 1 in 1000 packets.

I tend to use tcpdump for packet captures, because then I don’t have to install any software. But tcpdump does not have a way to sample.

I was about to write a simple Python script dodgy Go program using the pcap library, when I decided to try harder… 🤔

IPv4 Checksums

Slide of

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Version| IHL |Type of Service| Total Length |

 +-+

 | Identification |Flags| Fragment Offset |

 +-+

 | Time to Live | Protocol | Header Checksum |

 +-+

 | Source Address |

 +-+

 | Destination Address |

 +-+

 | Options | Padding |

 +-+

Are Checksums Uniform?

Slide of

IPv4 does not use a cryptographically sound method for calculating checksums. But, it seems to be roughly uniform in practice.

$ tshark -T fields -e ip.checksum -r pings.pcap

0x84a7

0x02c1

0x828f

0xde11

0x8163

0xd15a

0x7f87

0x3336

0x7cc3

0xd298

IPv4 Random Samples

Slide of

If we have a (kind of) randomly-distributed input, we can easily get a subset of the data with a simple comparison.

We can do that with tcpdump by using a pcap filter:

$ tcpdump ‘ip and ((ip[10:2] & 0x0fff) == 0x0fff)’

The ip[10:2] takes a 2-byte value starting at offset 10, and we compare that with the constant 0x0fff. About 1 in 4096 IPv4 packets will have a checksum that matches, so that allows us to sample at a rate of 1 in 4096.

We can use any value from 1 in 2 to 1 in 65536. More careful math can actually get any value. 🎉

IPv6 checksums?

Slide of

 +-+

 |Version| Traffic Class | Flow Label |

 +-+

 | Payload Length | Next Header | Hop Limit |

 +-+

 | |

 + +

 | |

 + Source Address +

 | |

 + +

 | |

 +-+

 | |

 + +

 | |

 + Destination Address +

 | |

 + +

 | |

 +-+

IPv6 checksums?

Slide of

 +-+

 |Version| Traffic Class | Flow Label |

 +-+

 | Payload Length | Next Header | Hop Limit |

 +-+

 | |

 + +

 | |

 + Source Address +

 | |

 + +

 | |

 +-+

 | |

 + +

 | |

 + Destination Address +

 | |

 + +

 | |

 +-+

🚫

TCP or UDP Checksums

Slide of

IPv6 has no header checksums. 🙈

The higher-layer protocols are supposed to do that.

For TCP, checksums are required. For UDP, checksums were optional in IPv4, but they are mandatory in IPv6.

I’m going to demonstrate with UDP, but the size is the same for TCP, just at offset 16 instead of 6. Presumably the UDP approach works for QUIC too.

UDP Checksums

Slide of

 0 7 8 15 16 23 24 31

 +--------+--------+--------+--------+

 | Source | Destination |

 | Port | Port |

 +--------+--------+--------+--------+

 | | |

 | Length | Checksum |

 +--------+--------+--------+--------+

 |

 | data octets ...

 +---------------- ...

IPv6 Random Samples Using UDP

Slide of

The udp construct does not work for IPv6 packets in tcpdump for some reason. But we can the ip construct and skip over the IPv6 header.

$ tcpdump ‘ip6 and ((ip6[46:2] & 0x0fff) == 0x0fff)’

Similar to the IPv4 version, we use ip6[46:2] to takes a 2-byte value starting at offset 46, and we compare that with the constant 0x0fff. We use 46, since our IPv6 header is 40 bytes, and our UDP checksum is at offset 6 in the UDP header.

This gives us similar sampling in IPv6.

It’s as Simple as That!

Slide of

sudo tcpdump -i eth0 -w dns-query-sample.pcap -U '(port 53) and ((ip and udp and ((udp[10] & 0x80) == 0x00) and ((ip[10:2] & 0x0fff) == 0x0fff)) or (ip6 and udp and ((ip6[50] & 0x80) == 0x00) and ((ip6[46:2] & 0x0fff) == 0x0fff)))'

Caveats

Slide of

Random sampling is not the same as “1 in X packets”, but rather roughly 1 in X packets, probabilisticly. This is mostly useful for very high rates of packet arrival.

Checksums are set by packet sender, and so are not secure. This is a useful technique for research and ad-hoc analysis or troubleshooting, but not for serious ongoing metrics.

Slide of

© 2025 International Business Machines Corporation

IBM and the IBM logo are trademarks of IBM Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on ibm.com/trademark.

THIS DOCUMENT IS DISTRIBUTED “AS IS” WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO EVENT, SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY.

Client examples are presented as illustrations of how those clients have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.

Not all offerings are available in every country in which IBM operates.

Any statements regarding IBM’s future direction, intent or product plans are subject to change or withdrawal without notice.

