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Motivation
Latency of a Virtual Network Function Chain: Operating on Low-Latency
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Figure: Snort 3 forwarder worst-case latencies (single-node)

5G Ultra-Reliable Low-Latency Communication (URLLC)

• Ultra reliable: 99.999% success probability
• Low latency: 1 ms one-way end-to-end latency in the radio access network (RAN)1

URRLC violations happen irregularly over the entire measurement
1

ITU, Report ITU-R M.2410-0 (11/2017) Minimum requirements related to technical performance for IMT-2020 radio interface(s), https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf, Accessed: 2025-05-05.
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https://gallenmu.github.io/low-latency/web/motivation.html
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Goal

Enabling ultra low-latency in general-purpose networks

This requires

• Sharing the network between multiple customers and service level requirements
• Resource sharing and on-demand provisioning of resources

We show that

• Low-latency with virtualizations on commodity hardware is possible
• Using careful planning and optimization, different virtualization solutions can be used.

We will talk about

• Optimizations: How can VMs and containers be optimized towards low-latency
• Measurement Setup: What is needed to make the data comparable
• Evaluation: What our experiments did show
• Our Recommendations
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Virtualization: Virtual Machines vs. Containers

Hardware
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Containers (e.g. LXC)
• Lightweight OS-level virtualization
• Shared kernel
• Isolated applications

Virtual Machines (VMs) (e.g. KVM)
• Full OS virtualization
• No shared kernel
• Isolated OS
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Low-Latency Optimizations
Challenges & Solutions

Reasons for virtualization latency performance impairment

• Interupt-based IO
• Linux NAPI

• CPU features
• Dynamic scheduling of processes onto CPU cores
• Virtual cores (SMT)
• Energy-saving mechanisms

• Expensive VM IO

Fixing Virtualization performance

• Polling-based IO
• DPDK

• CPU features
• Statically allocate CPU cores for processes
• Disable SMT
• Disable energy-saving mechanisms

• SR-IOV
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Measurement Setup

LoadGen
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• Loadgen runs a packet generator (MoonGen) creating UDP packets
• Device under Test (DuT) runs containers/VMs/packet processing application
• Timestamper records DuT ingress/egress traffic (passive optical Terminal Access Points)

• Hardware-timestamping of entire network traffic (timer resolution 1.25 ns)
• Determine worst-case latencies

• Traffic: UDP Traffic with 64 B packets
• Duration: 160 s per measurement
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Evaluation
Kernel Variants on LXC Container [1 Mpackets/s]
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The kernel variant is significantly influencing the tail-latency.
• Nearly similar results until 99.999th percentile
• Real-time kernel performs most deterministic
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Evaluation
Containers vs. Bare-metal [1 Mpackets/s]
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Bare-metal not significantly lower tail-latency
• Non-optimized version outperforms LXC bare-metal due to minimal isolation
• No significant difference when optimized
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Evaluation
Containers vs. VMs [1 Mpackets/s]
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VMs not significantly lower tail-latency
• Non-optimized version outperforms VMs LXC due to higher degree of isolation
• No significant difference when optimized
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Evaluation
Kernel vs. User-space [1 Mpackets/s]
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Optimized kernel-space networking similar to user-space
• In non-optimized system user-space networking clearly outperforms kernel-space
• No significant difference when optimized
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Publications and Measurement Data

Content is based on our publications

Container F. Wiedner, M. Helm, A. Daichendt u. a., „Containing Low Tail-Latencies in
Packet Processing Using Lightweight Virtualization,“ in 2023 35rd Interna-
tional Teletraffic Congress (ITC-35), Turin, Italy, Okt. 2023
F. Wiedner, M. Helm, A. Daichendt u. a., „Performance evaluation of con-
tainers for low-latency packet processing in virtualized network environ-
ments,“ Performance Evaluation, Jg. 166, S. 102 442, 2024, ISSN: 0166-
5316

Topologies F. Wiedner, M. Helm, S. Gallenmüller u. a., „HVNet: Hardware-Assisted
Virtual Networking on a Single Physical Host,“ in IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications Workshops, IEEE, 2022,
S. 1–6

Baremetal S. Gallenmüller, F. Wiedner, J. Naab u. a., „How Low Can You Go? A
Limbo Dance for Low-Latency Network Functions,“ J. Netw. Syst. Manag.,
Jg. 31, Nr. 1, S. 20, 2023

VMs S. Gallenmüller, F. Wiedner, J. Naab u. a., „Ducked Tails: Trimming the
Tail Latency of(f) Packet Processing Systems,“ in 17th International Con-
ference on Network and Service Management, CNSM 2021, Izmir, Turkey,
October 25-29, 2021, P. Chemouil, M. Ulema, S. Clayman u. a., Hrsg.,
IEEE, 2021, S. 537–543
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Publications and Measurement Data

• Available artifacts:
• Evaluation scripts
• Measurement data
• Reproducibility

• Website for container and comparison:
https://wiednerf.github.io/containerized-low-latency/

• Website for Motivation and Bare-metal
Optimizations:
https://gallenmu.github.io/latency-limbo/

• Website for Virtual Machine Optimiza-
tions:
https://gallenmu.github.io/hipnet21/

• → Allow to utilize results in network val-
idation, production, and research
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Conclusion
Low Tail-Latencies in Packet Processing Systems with
Virtualization

• Similar tail-latencies between container, bare-metal, and VMs
• More influence of shared OS in lightweight systems
• Latency excluded as primary selection criterion for technology
• Low-latency systems demand more resources than unoptimized ones
• Topology evaluation as example application

Recommendations

Technology Latency Security Resources

VM × ◦ ◦
Container ◦ × ✓
Bare-metal ✓ ✓ ×

Further information:
Papers are available online.

Container Optimizations

Bare-metal
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Backup: Application
Full Network-Domain Application

Emulation of L3 Network

• Utilize typical domain technologies: OSPF
• Software Router based on FRRouting
• Analyzing influence on latency with link failures

→ Hardware-supported Virtualization enables full network application evaluation in latency-aware scenarios
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Topology with multiple same-hop-length paths
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Backup: Application
Topology Adoption due to Link Failure

Experiment Settings
• four flows from entry to exit node
• Same setup as prior measurements
• Each flow with 10 Mbit/s and 363 B packet size

Experiment Plan
• Two Links are unavailable after 30 s
• OSPF need to react on network changes
• → What influences are visible in the network data and

per-flow end-to-end-latency?
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→ Initial routing with four flows using three paths
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→ Rerouting due link failure after 30 s
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Backup: Application
Evaluation
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Figure 1: Interface between R7 and R9
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Figure 2: Interface between R6 and R9
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Figure 3: Interface between R1 and R3
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Figure 4: Interface between R1 and R2
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Backup: Application
Evaluation
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→ Initial routing with four flows using three paths
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→ Rerouting due link failure after 30 s

Latency (average)
• Initially: between 288 µs and 295 µs

• During Link failure: between 294 µs and 299 µs
• → routing protocol-based low latency experiments pos-

sible

Evaluation of the Experiment
• Experiment shows the potential on using virtualization

for networking
• Potential use-cases are flexible validations or network

functions
• Careful optimizing the virtualized environment allow so-

phisticated experiments and applications
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