

How the Internet routed around Cable Damage in the Baltic Sea

Internet event analysis with RIPE Atlas

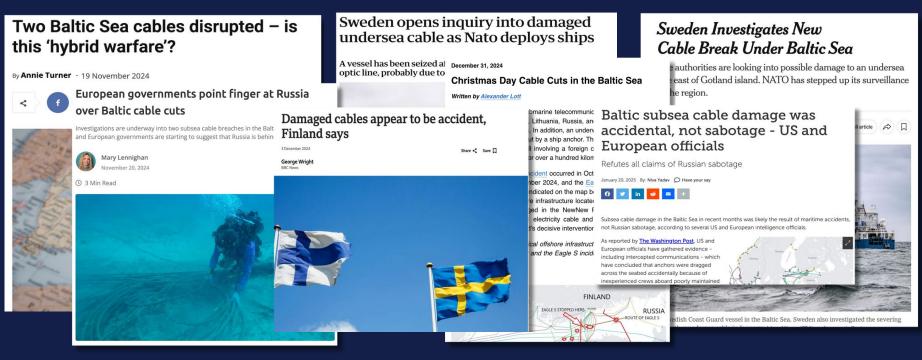
Preamble

This is an abridged version ahead of Friday's session based on content published on RIPE Labs:

- https://labs.ripe.net/author/emileaben/does-the-internet-route-around-damage-baltic
 -sea-cable-cuts/
- https://labs.ripe.net/author/emileaben/a-deep-dive-into-the-baltic-sea-cable-cuts/

Collaborative work with Alun Davies, Anastasiya Pak, Jim Cowie and Joaquin Vaquero Ortiz

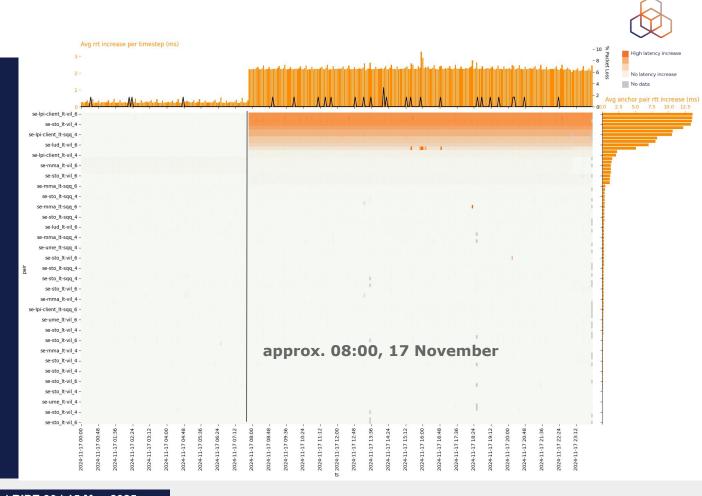
Baltic Sea cable damage



Partial timeline (focus on initial events we analysed) 17 Nov 2024: BCS East-West outage 18 Nov 2024: **C-LION1** outage 27 Nov 2024: BCS East-West restored 28 Nov 2024: C-LION1 restored 25 Dec 2024: C-LION1 outage 06 Jan 2025: C-LION1 restored 26 Jan 2025: LVRTC outage **28 Feb 2025: LVRTC restored**

Baltic Sea cable damage

Media coverage


BCS East West

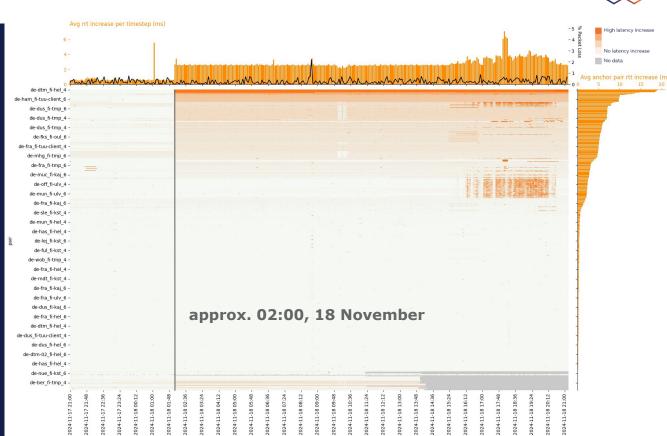
Latency shift

12 hour before/after time of event

Latency increase of approx 10-20 ms shortly before 08:00 UTC on 17 November

We subtract the minimum latency for a path during our observation period to make the latency jumps comparable

C-LION1



Latency shift

Latency increase of approx 5ms a little after 02:00 UTC on 18 November

Packet loss

Again, no significant increase in packet loss at time of outage

Summing up

There was a relatively minor but visible shift in latency for around 20-30% of paths between observed anchors

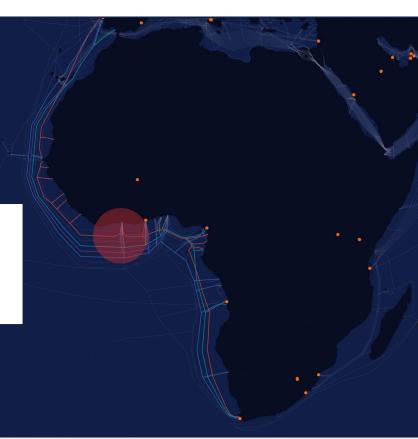
But there was no concurrent increase in packet loss

Summing up

There was a relatively minor but visible shift in latency for around 20-30% of paths between observed anchors

But there was no concurrent increase in packet loss

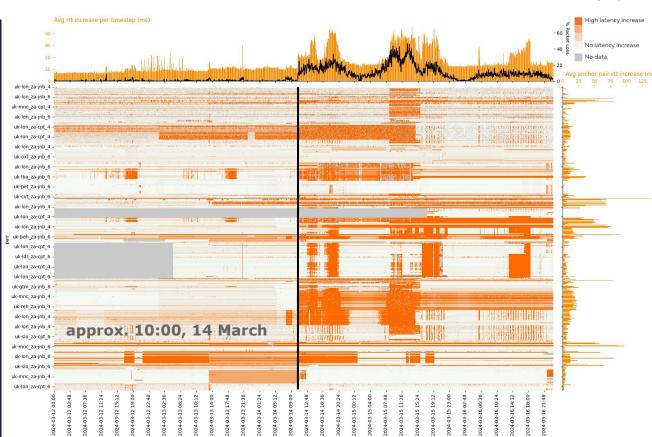
The Internet routed around damage!


Resilience is not guaranteed

Cable damage in Africa

14 March 2024: Submarine landslide off coast of Cote d'Ivoire resulted in damage across multiple cables:

- ACE: Africa Coast to Europe
- MainOne
- SAT-3: Submarine Atlantic 3/West Africa Submarine Cable
- WACS: West Africa Cable System



Resilience is not guaranteed

Latency shift with packet loss

Latency increases of approx 20-30 ms accompanied by concurrent increase in packet loss

Conclusions

In the Baltic Sea:

- "The Internet routed around damage"
- Internet resilience depends on multiple levels of redundancy
 - Redundancy between networks
 - Redundancy within networks (circuit and routing)

Conclusions

In the Baltic Sea:

- "The Internet routed around damage"
- Internet resilience depends on multiple levels of redundancy
 - Redundancy between networks
 - Redundancy within networks (circuit and routing)

But resilience is not guaranteed

Conclusions

In the Baltic Sea:

- "The Internet routed around damage"
- Internet resilience depends on multiple levels of redundancy
 - Redundancy between networks
 - Redundancy within networks (circuit and routing)

But resilience is not guaranteed

We have to keep monitoring, measuring, understanding

Questions & Comments

THANK YOU!