TwinGuard:

An Adaptive Digital Twin for Real-Time HTTP(S) Intrusion Detection and Threat Intelligence

Yuanyuan Zhou, Anna Maria Mandalari

Ryu Kuki, Takayuki Sasaki, Katsunari Yoshioka

Motivation

- Modern IoT Challenges Demand New Defences

IoT devices are widely deployed across critical

infrastructure domains

Figure source: Transforma Insights. "Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2033, by Vertical (in Millions)." Statista Inc., 10 May 2024, https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/

Previous Work

- Digital twin concepts are widely applied in **Industrial Control System (ICS) security**, rarely **web-based attacks.**
- Prior work targets physical systems or network-layer threats, and focus on data generation
- No existing system uses real-time honeypot data to detect application-layer attacks adaptively.

Previous Work

Focus	Papers	Method			Contri	ribution	
Wild Web Attack Analysis	Canali et al. (2013)	Real-world honeypot attack sessions with multi-stage workflow analysis			vith 13 pos IRC bo	13 post-exploitation types (e.g., web shells, IRC bots, spam)	
	Li et al. (2021)	Honeysite-based bot & HTTP threat study			Catego dy stuffing limits o	Categorizes traffic (scanning, credential stuffing, exploits); highlights fingerprinting limits of UA strings	
Information Gathering (1.8 Drive-by downloads (1.2%)	DOS & Bruteforcing (4.6%) TABLE IV: Popular TLS fingerprint distribution. Entries below the line correspond to Chromium-based tools that were not in the top ten, in terms of unique bot IP count.					 Existing taxonomies are often limited to specific 	
Second Stages (37.2%) Privilege Escalation (1.7%) Scanners (2.3%)	Link Farming (2.7%) SPAM (7.8%) Phishing & Scams (7.3% Botnets (2.9%)	Tools	Unique FPs	IP Count	Total Requests	attack categories.	
		Go-http-client Libwww-perl or wget PycURL/curl Python-urllib 3 NetcraftSurveyAgent msnbot/bingbot Chrome-1(Googlebot)	28 17 26 8 2 4	15,862 6,102 3,942 2,858 2,381 1,995 1,836	8,708,876 120,423 80,374 22,885 14,464 44,437 28,082	 Prior fingerprinting work mostly focuses on source identification. 	
	Defacements (28.1%)	Python-requests 2.x commix/v2.9-stable Java/1.8.0 MJ12Bot	11 3 8 2	1,063 1,029 308 289	754,711 5,738 1,710 28,065	 We analyze the intrusions from the wild and give the profiling based on 	
		Chrome-2(Chrome, Opera) Chrome-3(Headless Chrome) Chrome-4(coc_coc_browser)	1 1 1	490 80 4	2,829 101	behavioral characteristics	
Figure 6. Attack beh files uploaded	avior, based on unique	Total	113	38,239	9,879,326	and taxonomy validation	

Introduction

TwinGuard Design

Physical Layer – Honeypot Networks and Data Acquisition

70% of fields align with our primary schema

Trie Monitoring

interpretable view of structured request paths by aggregating common behaviour patterns

Machine learning classifiers

general-purpose intrusion detection component

Sliding Window Mechanism

continuously monitors performance degradation and structural novelty within the HTTP(S) traffic stream

Monitoring module: Adaptive Loop Structure

Classification: Scan Attempt Intrusion-Control

Stable Periods:

- both classifiers drops by less than 6.0%
- the unknown pattern rate under **3.0%**

Labeling Criteria:

- Intrusions are labelled using **rule-based matching** of structured request paths, **payload content**, and **endpoint semantics**.
- If a spike in unknown patterns occurs without existing labels, we check if **new labelling is needed** to maintain detection accurate.

Virtual Layer – Real-Time Monitoring and Adaptive Detection Accuracy and Unknown Rate Dynamics

w = 6 strikes a balance between the model utility and stable performance

Adaptive ability with the integration of X-POT

Adaptation to a new honeypot (X-Pot) source under window size w = 6.

A surge in unknown sequences and an accuracy drop is observed upon integration, followed by recovery after retraining.

Intelligence Layer: Intrusion Labelling and Attacker Attribution Hierarchical Pattern-Based Intrusion Labelling

Intrusion Category	Technique	End Goal	
	File Inclusion (LFI/RFI)	Code Execution	
	Misconfiguration Exploit	Priv. Esc. / Info Leak	
Exploit Attompts	REST/JSON Abuse	Data Leak / Enumeration	
Exploit Attempts	SQL Injection (SQLi)	DB Access / Bypass	
	Command Injection	Code Execution	
	Denial of Service (DoS)	Resource Exhaustion	
	Simple Shell Upload	Persistent Access	
Web Shell Upload	Obfuscated Shell Upload	Stealth Backdoor	
	Two-Stage Payload	Loader & Dropper	
	Botnet C2 Callback	Remote Control	
Post Emploitation Astivity	Cronjob Deployment	Persistence	
Post-Exploitation Activity	Spam Mailer Setup	Email Abuse	
	Proxy/Relay Deployment	Lateral Movement	
Delivery / Devenloader	Direct Script Drop	Code Execution	
	Drive-by Download / JS	User Exploitation	
Obfuscated / Anomalous Behavior	Junk Payload Flood Unknown Pattern	Resource Exhaustion	
		chargeovered variant	

Hierarchical taxonomy structure:

- Level 1: Parent Category (e.g., Exploit, Downloader) ~high-level intent
- Level 2: Subtypes (e.g., SQLi, Command Injection). *~how it's done*
- Level 3: End Goals (Execution, Leak, etc.).
 ~why the attacker is doing it

Intelligence Layer: Intrusion Labelling and Attacker Attribution

Feature distributions are visualized using histograms and kernel density estimates (KDE)

User-Agent

Attacker Behavioural Fingerprinting

The *x*-axis represents different HTTP session features, and the *y*-axis indicates their normalized values across sessions.

- Diverse behaviour across UA groups, especially in intrusion-control.
- High divergence observed between scanner bot, python library, indicates distinct attack behaviours.

Intelligence Layer: Intrusion Labelling and Attacker Attribution Attacker Behavioural Fingerprinting

Cloud Provider

- **Overall low divergence** → attack behaviour is largely consistent across cloud platforms.
- **Cloud C shows slight divergence** in intrusion-control attacks.
- Impact is minimal → cloud provider has limited influence on attack diversity.

Intelligence Layer: Intrusion Labelling and Attacker Attribution

User-Agent

Attack Distribution by Parent Category per User-Agent Group

Browser and CLI tool sessions are concentrated in broad categories like exploit attempts and web shell uploads, reflecting traditional probing behaviour.

python libraries and *scanner bots* demonstrate greater technique diversity, especially in misconfiguration exploits and file inclusion (LFI/RFI).

The missing and other categories display highly irregular distributions, suggesting spoofed or unstable automation strategies.

Intelligence Layer: Intrusion Labelling and Attacker Attribution

Cloud Provider

Attack Distribution by Parent Category per Cloud Provider

- **Shared Attack Focus**: All cloud providers show similar dominance in script drops & shell uploads, matching low JS divergence.
- Minor Exploit Variations: Slight shifts (e.g., more SQLi on Cloud-D, misconfiguration on Cloud-C) don't alter overall behaviour.
- Confirms cloud-based attacks are likely **templated and automated**, regardless of provider.

Conclusion

- Maintains >90% accuracy during stable periods
- Dual classifiers + sequence monitoring (Trie) ensure robustness

- Strong negative correlation between unknown rate and accuracy
- 42% spike in unknowns + 30% accuracy drop mitigated in 1 update cycle

- Processes traffic from heterogeneous honeypot sources
- Demonstrates adaptability across environments

- Reveals diverse attacker behaviour across user-agent types
- Cloud-based traffic shows consistent patterns → shared tooling

Future Work

Real-World Deployment & Evaluation Transition from honeypot-only testing to real production environments

Expand Protocol Coverage Move beyond HTTP(S) to include protocols like SSH, FTP, and DNS

Enable Continuous Streaming Integrate TwinGuard with live traffic pipelines, from time-bounded snapshots to fully real-time monitoring

Lightweight IoT Deployment

Deploy TwinGuard on IoT gateways and edge devices; Test responsiveness and overhead in resource-constrained settings

Follow us: <u>https://safenetiot.github.io/</u> <u>https://www.youtube.com/watch?v=0fg0acuRbUA</u>

