
INTRODUCTION
TO ANSIBLE

Keeping configurations
nice and accurate

ABOUT THE PRESENTER

•Sander Steffann

• Independent IPv6 consultant
• Strategy, architecture, design, labs, testing,

implementation etc…

• Involvement

• Global NOG Alliance
• RIPE Community
• RIPE NCC Executive Board

2

• Introduction

•Automation in general

• Benefits of automation
• What to automate?
• What not (yet) to automate?
• Available automation tools (Ansible, Puppet, Salt etc)

3

•Working with Ansible

• What is Ansible?
• Installing Ansible
• How Ansible Works and its Key Components
• Using the Ad-Hoc ansible command

4

•Ansible playbooks

• YAML syntax
• Creating an inventory
• Playbook Basics
• Available Ansible modules
• Organising playbooks into roles

5

BENEFITS OF AUTOMATION

COMMON PROBLEMS

ROUGH COMPARISON

8

Traditional Automated

WHAT TO AUTOMATE?

OR NOT?

OR NOT YET?

EXTREME VIEWPOINTS

•Automate everything!

• Every server, router, switch, firewall etc. should be under

complete automation control!
• All or nothing approach
• Possible for Greenfield deployment
• Good automation skills need to be already available

10

EXTREME VIEWPOINTS

•Use automation only for daily tasks

• Still configure devices manually
• Create automation for operational changes

• Update software
• Create new user
• Add BGP neighbour
• Etc…

11

THE MIDDLE GROUND

•Look at your devices

• What changes a lot?
• What do you spend most time on?
• Where are most errors made?
• What would you like to do, but is too time-consuming?

•Start with automating those

12

AUTOMATION TOOLS

DEPLOYMENT MODELS

•Push: controller pushes config to device

• Can be agent-less
• Ansible, Otter, SaltStack, Terraform

•Pull: device pulls config from controller

• Requires agent on device
• Ansible-pull, CFEngine, Chef, Otter, Puppet, SaltStack

14

CONFIGURATION STYLE

•Declarative

• Describes “what”
• Focus on desired end-state, automation makes it happen
• Ansible, CFEngine, Otter, Puppet, SaltStack, Terraform

• Imperative

• Describes “how”
• Focus on step-by-step actions, automation executes it
• Ansible, Chef, Otter, SaltStack

15

WHY ANSIBLE?
•Open source

•Constantly improved

•Easily extensible (if you know Python)

•Can manage many network devices

•De-facto standard by now

16

WHAT IS ANSIBLE?

WHAT IS ANSIBLE?
•Configuration management

• Consistency
• Central administration
• What state should the device configuration be in?

•Provisioning

• Take steps to make sure the state is correct

18

PHILOSOPHY

•Ansible is not a programming language

• Describe "what" you want, not "how" (mostly)

•Keep things simple and understandable

• Think of it more as a modelling system (like Lego?)

than a programming language
• Advanced users can write plugins to do complex work
• The playbook should be simple to read and check

19

HOW DOES THAT WORK?
•Configuration

• Define sets of configuration items, one for each purpose
• Define which devices belong to which set
• Add device-specific settings to that

•Result

• You end up with consistently configured devices
• Where each device’s purpose is clearly defined

20

LAB INTRODUCTION

TIME CONSTRAINTS

•We don't have time to do the labs

• I will demo each exercise for the classroom

•You can do the exercises in your own time

• The lab will remain online until the beginning of June
• Or run it on your own laptop!

•Support

• If you have any questions feel free to approach me!
• I can often be found in the NomCom room

22

Router

Lab server

WWW

Server

Et1 eth1

eth0Ma0

TOPOLOGY

23

LAB INTRODUCTION

•We use netlab (https://netlab.tools/)

• Tool to quickly set up network labs for testing and training
• Command-line-only, no web interface or remote desktop

•Student login:

• Protocol:	 SSH
• Server:	 ripe90.lab.steffann.nl
• Username:	student1, student2, student3, …, student26
• Password:	 «on your Terminal Access Card»

24

https://netlab.tools/

STARTING A LAB

25

DEVICE LOGINS

•User student1:

• ssh admin@lab1-router
• ssh admin@lab1-server

•User student2:

• ssh admin@lab2-router
• ssh admin@lab2-server

•Etc…

26

HOW ANSIBLE WORKS AND ITS
KEY COMPONENTS

AT A HIGH LEVEL

•Connectivity

• Use SSH (+ e.g. netconf) to connect to devices

•Method

• Upload Python scripts to execute on device

•Execute actions

• Gather information (Facts)
• Apply configuration items based on definitions and facts

28

COMPONENTS

• Inventory

• The list of devices, optionally organised in groups

•Host and Group variables

• Every device and group can have its own settings

•Facts

• Automatically discovered variables about a device

29

COMPONENTS

•Modules

• Action types that you can use in your automation

•Task

• An action to perform

•Roles

• A set of tasks

30

COMPONENTS

•Play

• A set of hosts/groups connected to a set of tasks

•Playbook

• A list of plays

31

COMPONENTS
•Tags:

• A label attached to a task

•Filters:

• Filter, extract and/or convert data from variables

•Lookup:

• Lookup data from external service

•Tests:

• Check whether a variable matches a certain condition

32

DISCUSSION
Get a clear picture of the

structure

USING THE AD-HOC

ANSIBLE COMMAND

IS THE LAB REACHABLE?
•Let's make sure we can connect:

ssh admin@labXX-server
ssh admin@labXX-router

•Save the fingerprint to known_hosts

• Ansible needs it to be present
• So let's use this opportunity to add it

35

A SIMPLE START

•We first need a directory and an inventory:

mkdir ~/ansible && cd ~/ansible
echo "labXX-server" > hosts

•Let's try:

ansible --inventory hosts

--module-name command
--args "lsb_release -d"
labXX-server

•What happened?
36

A SIMPLE START

•Ansible needs to be able to log in!

•Let's try:

ansible --inventory hosts
--module-name command
--args "lsb_release -d"
--user admin
--ask-pass
labXX-server

•What happened?

37

A SIMPLE START

•Ansible needs to be able to log in!

•Let's try:

ansible --inventory hosts
--module-name command
--args "id"
--user admin
--ask-pass
labXX-server

•What happened?

38

A SIMPLE START

•Now again with root permission:

ansible --inventory hosts

--module-name command
--args "id"
--user admin
--ask-pass
--become
--ask-become-pass
labXX-server

•Success!

39

DISCUSSION
What do you think so far?

CREATING AN INVENTORY

PERMISSIONS

•Ansible uses /etc/ansible by default

• We want to work in ~/ansible

•Create a basic ansible.cfg in ~/ansible

•vi/emacs/nano/joe ~/ansible/ansible.cfg

[defaults]
inventory = ./hosts
interpreter_python = auto_silent

42

CREATE A REAL INVENTORY

•We just configured the inventory as:

./hosts

•Let's fill it!

[servers]
labXX-server

[routers]
labXX-router

43

CHECK

• It should now look like this:

$ ls -l ~/ansible
-rw-r--r-- 1 lab lab 31 Sep 26 21:40 ansible.cfg
-rw-r--r-- 1 lab lab 42 Sep 26 21:41 hosts

$ cat ~/ansible/ansible.cfg
[defaults]
inventory = ./hosts

interpreter_python = auto_silent

44

CHECK

• It should now look like this:

$ cat ~/ansible/hosts
[servers]
labXX-server

[routers]
labXX-router

45

GROUPS

•We now have three groups:

• servers
• routers
• all

46

LET'S USE IT
•Let's try the ansible command:

cd ~/ansible
ansible

--module-name command
--args "lsb_release -d"
--user admin
--ask-pass
servers

•Success!

47

TYPING PASSWORD IS ANNOYING

•Create the following file:

~/ansible/group_vars/all.yml

•And put this in it:

ansible_user: "admin"
ansible_ssh_pass: "admin"
ansible_become_pass: "admin"

•Now ansible can authenticate itself

48

CHECK

• It should now look like this:

$ ls -l ~/ansible
-rw-r--r-- 1 lab lab 31 Sep 26 21:40 ansible.cfg
drwxr-xr-x 2 lab lab 4096 Sep 26 21:17 group_vars
-rw-r--r-- 1 lab lab 42 Sep 26 21:41 hosts

$ cat ~/ansible/group_vars/all.yml
ansible_user: "admin"
ansible_ssh_pass: "admin"
ansible_become_pass: "admin"

49

LOOK AT THE FACTS

•Let's try:

cd ~/ansible
ansible

--module-name setup
servers

•Success!

50

LOOK AT THE FACTS AGAIN

•Let's try:

cd ~/ansible
ansible -m setup servers

•Success!

51

DISCUSSION
Improvement compared to

previous steps

PLAYBOOK BASICS

COMPONENTS

•Play

• A set of hosts/groups connected to a set of tasks

•Playbook

• A list of plays

54

FIRST WE NEED SOME CONFIG

•Create the following file:

~/ansible/group_vars/routers.yml

•And put this in it:

ansible_connection: network_cli
ansible_become_method: enable
ansible_network_os: eos

55

DEFINED IN YAML
•An example, ~/ansible/versions.yml:

- hosts: servers
tasks:
- debug: msg="{{ansible_facts.lsb.release}}"

- hosts: routers
tasks:
- debug:
 msg: "{{ansible_net_version}}"

56

RUNNING THE PLAYBOOK

•We can execute the playbook with:

cd ~/ansible
ansible-playbook versions.yml

57

DISCUSSION
Now we are getting

somewhere

ORGANISING PLAYBOOKS

INTO ROLES

REUSING COMMON TASKS

•Some tasks will be used often

• Basic sysadmin settings
• Installing or updating software
• Etc.

60

USING ROLES

•What are roles?

• Roles are collections of tasks, files, templates etc.

•Common structure

~/ansible/roles/role_name/
 defaults/
 files/
 handlers/
 tasks/
 templates/

61

Default settings

Files to copy to device

Tasks that run automatically

The main tasks of the role

Templates for text files

A SIMPLE ROLE

•Let's start with roles for getting versions

• In ~/ansible/roles/server_version/tasks/main.yml
- name: "Get server version"

debug: msg="{{ansible_facts.lsb.codename}}"

• In ~/ansible/roles/router_version/tasks/main.yml
- name: "Show router version"

debug:
 msg: "Version {{ansible_net_version}}"

62

HOW TO USE ROLES

•From your playbook

- hosts: servers

roles:
- server_version

- hosts: routers
roles:
- router_version

63

DISCUSSION
What would be good roles?

SECURING YOUR DATA WITH
ANSIBLE-VAULT

CONFIDENTIAL INFORMATION

•Your inventory contains very secret info

• Usernames and password
• Encryption keys?
• Etc.

•What if this information leaks?

66

ENCRYPT DATA WITH VAULT

•Encrypting whole files

• The simplest way to use it
ansible-vault encrypt group_vars/all.yml
ansible-vault edit group_vars/all.yml

•You can also encrypt files/ in a role!

67

ENCRYPT DATA WITH VAULT

•Encrypting single settings

• For encrypting parts of a file
ansible-vault encrypt_string "This is a secret"

• Use the output in your group_vars, host_vars etc.
the_secret: !vault |

 $ANSIBLE_VAULT;1.1;AES256
 6231336539666234306139346433616338376437
 6134333665353966363534333632666535333761
 6339626533396638616637363262653932616635

68

LETTING ANSIBLE DECRYPT

•Ansible will still understand vault data

• Use --ask-vault-pass to supply the password
• You can make that the default in ansible.cfg
ask_vault_pass = True

69

AVAILABLE ANSIBLE MODULES

MODULES

•Modules provide functionality

•This is where Ansible is very strong

• Modules for Linux, BSD, Windows etc.
• Modules for network devices
• Modules for VMWare, AWS, Kubernetes etc.
• Etc.
• Etc..
• Etc…

71

A BRIEF OVERVIEW

•Just some of the most interesting ones

• According to me personally: this list is biased!
• Look around on the Ansible website to see for yourself

72

ANSIBLE UTILITIES

•assert

•debug

• fail

• Import

• import_playbook
• import_role
• import_tasks

• Include

• include_role
• include_tasks
• include_vars

•pause

•set_fact

•wait_for

73

GENERIC COMMANDS

•command

•expect

• raw

•script

•shell

74

FILES

•archive

•unarchive

•blockinfile

• lineinfile

• fetch

•file

• ini_file

•patch

• replace

•stat

•synchronize

• tempfile

• template

•xml

75

NETWORKING

•Arista

•Aruba

•Cisco

• ASA
• IOS / -XR
• Nexus
• WLC

•Cumulus

•Dell

• os6
• os9
• os10

•A10

•F5

•Fortinet

•Huawei

•Juniper

•Mikrotik

•Ubiquiti

76

OS PACKAGES

•apk

•apt

•dnf

•dpkg

•flatpak

•homebrew

•opkg

•pkg5

•pkgng

•ports

• rhn

• rpm

•yum

• zypper

77

SOURCE CONTROL

•Bazaar

•Bitbucket

•Git

• GitHub
• GitLab

•Mercurial (hg)

•Subversion (svn)

78

SYSTEM

•Filesystem

• iSCSI
• LVM
• Parted

•Cron / at

•SSH

• authorized_key
• known_hosts

•Hostname

•Firewall

• IP Tables
• Firewalld
• UFW

•Make

•Ping

•SELinux

•Systemd

•Timezone

•User /
group

79

