
Go for rsync Diversity
Simon Leinen <simon.leinen@switch.ch>, Switch (AS559)
RIPE 90 Routing WG, 15 May 2025

mailto:simon.leinen@switch.ch


Management Summary

• I tried to use Michael Stapelberg1’s “gokrazy” rsync variant
for fetching RPKI material (ROAs) with Routinator and FORT.

• It works2
• RRDP is still the better protocol,
ceterum censeo rsync delendum esse(???)

1 He did all the work. Thank you, Michael!
2 For some value of “works”With a bit of configuration fiddling,

reliably with acceptable performance,
and (small) manageability impact

2

TL;DL



Diversity for RPKI Robustness

• Many operators use different RPKI caches/validators, e.g. two of
• Routinator 3000
• rpki-client
• FORT

• Should we use different rsync implementations as well?
• (Assumption: We still need rsync at all until everyone has moved to RRDP)

3



Rsync variants

• “Tridge” rsync
• openrsync (in OpenBSD and macOS(?))
• Gokrazy rsync

• Written from scratch/spec in Go, a memory-safe language
• By Michael Stapelberg (of router7 fame)

• (possibly others, not all well supported anymore)

4

https://github.com/gokrazy/rsync
https://router7.org/


Why Go?

• “Memory safe”, i.e. no buffer overflows and use-after-free
• Remember CVE-2024-12084 & friends?

• Easy multithreading model, useful for networking tools

5

https://kb.cert.org/vuls/id/952657
https://kb.cert.org/vuls/id/952657


Why “gokrazy” rsync?

• Michael has large-systems and Go “street credibility”
• He expressed willingness to help with this use case (implement missing options etc.)
• We live in the same town country

6



gokr-rsync compatibility status

• rpki-client: Assumes support for (too) many rsync options
• FORT: works, as of May 2025—see below
• Routinator 3000: works, as of March 2025

7

rsync-command = "/usr/bin/gokr-rsync"
rsync-args = ["--compress", "--no-motd", "--contimeout=10"]

/etc/routinator/routinator.conf:



Measurement results

FORT 1.6.6, rsync.priority=90 (prefer rsync over RRDP)

8

Tridge rsync gokr-rsync
Initial load time ~980s (16’20”) ~1600s (26’40”)

Subsequent refresh 
times

~823–1’001s ~751–986s

#Validated ROAs
after initial load

687’868 693’054

#Validated ROAs
over a few hours

687’868–693’075 692’863–693’079



Possible Future Work

• Add missing command-line args (--include/--exclude etc.)
• Maybe add diverse return codes like Tridge rsync
• Use as library for Go-based RPKI implementations?

9



BUT WHY?

• Haven’t we moved past rsync for RPKI?
• RRDP is the future! (Or we’ll come up with something else…)
• Yes, but…

• Even when deprecated, we’ll have to support rsync for RPKI for “a while” (years)
• Keeping old infrastructure running—not sexy but someone has to do it (to enable 

blockchain, AI…)
• (OK, the actual reason was that I wanted to learn Go from the pros… ;-)

10




